Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1355945, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38482021

RESUMO

The anticancer efficacy of Sudocetaxel Zendusortide (TH1902), a peptide-drug conjugate internalized through a sortilin-mediated process, was assessed in a triple-negative breast cancer-derived MDA-MB-231 immunocompromised xenograft tumor model where complete tumor regression was observed for more than 40 days after the last treatment. Surprisingly, immunohistochemistry analysis revealed high staining of STING, a master regulator in the cancer-immunity cycle. A weekly administration of TH1902 as a single agent in a murine B16-F10 melanoma syngeneic tumor model demonstrated superior tumor growth inhibition than did docetaxel. A net increase in CD45 leukocyte infiltration within TH1902-treated tumors, especially for tumor-infiltrating lymphocytes and tumor-associated macrophages was observed. Increased staining of perforin, granzyme B, and caspase-3 was suggestive of elevated cytotoxic T and natural killer cell activities. Combined TH1902/anti-PD-L1 treatment led to increases in tumor growth inhibition and median animal survival. TH1902 inhibited cell proliferation and triggered apoptosis and senescence in B16-F10 cells in vitro, while inducing several downstream effectors of the cGAS/STING pathway and the expression of MHC-I and PD-L1. This is the first evidence that TH1902 exerts its antitumor activity, in part, through modulation of the immune tumor microenvironment and that the combination of TH1902 with checkpoint inhibitors (anti-PD-L1) could lead to improved clinical outcomes.


Assuntos
Antígeno B7-H1 , Nucleotidiltransferases , Humanos , Camundongos , Animais , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Morte Celular
3.
Pharmaceutics ; 14(9)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36145658

RESUMO

Background: Breast and ovarian cancer stem cells (CSC) can contribute to the invasive and chemoresistance phenotype of tumors. TH1902, a newly developed sortilin (SORT1)-targeted peptide-docetaxel conjugate is currently in phase-1 clinical trial. Whether TH1902 impacts the chemoresistance phenotype of human triple-negative breast CSC (hTNBCSC) and ovarian CSC (hOvCSC) is unknown. Methods and Results: Immunophenotyping of hTNBCSC and hOvCSC was performed by flow cytometry and confirmed the expression of SORT1, and of CSC markers CD133, NANOG, and SOX2. Western blotting demonstrated the expression of the drug efflux pumps from the P-gp family members, ABCB1 and ABCB5. The cellular uptake of the fluorescent Alexa488-peptide from TH1902 was inhibited upon siRNA-mediated repression of SORT1 or upon competition with SORT1 ligands. In contrast to docetaxel, TH1902 inhibited in vitro migration, induced cell apoptosis and lead to G2/M cell cycle arrest of the hTNBCSC. These events were unaffected by the presence of the P-gp inhibitors cyclosporine A or PSC-833. In vivo, using immunosuppressed nude mice xenografts, TH1902 significantly inhibited the growth of hTNBCSC and hOvCSC xenografts (~80% vs. ~35% for docetaxel) when administered weekly as intravenous bolus for three cycles at 15 mg/kg, a dose equivalent to the maximal tolerated dose of docetaxel. Therapeutic efficacy was further observed when carboplatin was combined to TH1902. Conclusions: Overall, TH1902 exerts a superior anticancer activity than the unconjugated docetaxel, in part, by circumventing the CSC drug resistance phenotype that could potentially reduce cancer recurrence attributable to CSC.

4.
Cancers (Basel) ; 14(8)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35454785

RESUMO

Sortilin (SORT1) receptor-mediated endocytosis functions were exploited for this new approach for effective and safe treatments of gynecological cancers. Here, high expression of SORT1 was found in >75% of the clinically annotated ovarian and endometrial tumors analyzed by immunohistochemistry. Therefore, the anticancer properties of the peptide-drug conjugate TH1902, a peptide that targets SORT1 and which is linked to docetaxel molecules, were investigated both in vitro using ovarian and endometrial cancer cell cultures and in vivo using xenograft models. In vitro, TH1902 inhibited cell proliferation and triggered higher SORT1-dependent cell apoptosis than unconjugated docetaxel did in ES-2 and SKOV3 ovarian cancer cell lines. The uptake of the Alexa488-TH19P01 peptide from TH1902 was reduced upon siRNA-mediated silencing of SORT1. In vivo, weekly administration of TH1902 showed better tolerability compared to equivalent docetaxel doses and inhibited tumor growth in ovarian and endometrial xenograft mice models. TH1902 as a single agent inhibited ovarian tumor growth more than either of the unconjugated taxanes or carboplatin. Furthermore, TH1902 combination with carboplatin also demonstrated better efficacy when compared to both taxanes-carboplatin combinations. Overall, TH1902 shows better in vivo efficacy, compared to that of docetaxel and even paclitaxel, against SORT1-positive ovarian and endometrial cancers and could be safely combined with carboplatin.

5.
Front Oncol ; 11: 760787, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34751242

RESUMO

Vasculogenic mimicry (VM) is defined as the formation of microvascular channels by genetically deregulated cancer cells and is often associated with high tumor grade and cancer therapy resistance. This microcirculation system, independent of endothelial cells, provides oxygen and nutrients to tumors, and contributes also in part to metastasis. VM has been observed in ovarian cancer and in triple negative breast cancer (TNBC) and shown to correlate with decreased overall cancer patient survival. Thus, strategies designed to inhibit VM may improve cancer patient treatments. In this study, sortilin (SORT1) receptor was detected in in vitro 3D capillary-like structures formed by ES-2 ovarian cancer and MDA-MB-231 TNBC-derived cells when grown on Matrigel. SORT1 gene silencing or antibodies directed against its extracellular domain inhibited capillary-like structure formation. In vitro, VM also correlated with increased gene expression of matrix metalloproteinase-9 (MMP-9) and of the cancer stem cell marker CD133. In vivo ES-2 xenograft model showed PAS+/CD31- VM structures (staining positive for both SORT1 and CD133). TH1904, a Doxorubicin-peptide conjugate that is internalized by SORT1, significantly decreased in vitro VM at low nM concentrations. In contrast, VM was unaffected by unconjugated Doxorubicin or Doxil (liposomal Doxorubicin) up to µM concentrations. TH1902, a Docetaxel-peptide conjugate, altered even more efficiently in vitro VM at pM concentrations. Overall, current data evidence for the first time that 1) SORT1 itself exerts a crucial role in both ES-2 and MDA-MB-231 VM, and that 2) VM in these cancer cell models can be efficiently inhibited by the peptide-drug conjugates TH1902/TH1904. These new findings also indicate that both peptide-drug conjugates, in addition to their reported cytotoxicity, could possibly inhibit VM in SORT1-positive TNBC and ovarian cancer patients.

6.
Cancer Sci ; 112(10): 4317-4334, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34314556

RESUMO

Triple-negative breast cancer (TNBC) is a heterogeneous subgroup of cancers which lacks the expression and/or amplification of targetable biomarkers (ie, estrogen receptor, progestrogen receptor, and human epidermal growth factor receptor 2), and is often associated with the worse disease-specific outcomes than other breast cancer subtypes. Here, we report that high expression of the sortilin (SORT1) receptor correlates with the decreased survival in TNBC patients, and more importantly in those bearing lymph node metastases. By exploiting SORT1 function in ligand internalization, a new anticancer treatment strategy was designed to target SORT1-positive TNBC-derived cells both in vitro and in two in vivo tumor xenografts models. A peptide (TH19P01), which requires SORT1 for internalization and to which many anticancer drugs could be conjugated, was developed. In vitro, while the TH19P01 peptide itself did not exert any antiproliferative or apoptotic effects, the docetaxel-TH19P01 conjugate (TH1902) exerted potent antiproliferative and antimigratory activities when tested on TNBC-derived MDA-MB-231 cells. TH1902 triggered faster and more potent apoptotic cell death than did unconjugated docetaxel. The apoptotic and antimigratory effects of TH1902 were both reversed by two SORT1 ligands, neurotensin and progranulin, and on siRNA-mediated silencing of SORT1. TH1902 also altered microtubule polymerization and triggered the downregulation of the anti-apoptotic Bcl-xL biomarker. In vivo, both i.p. and i.v. administrations of TH1902 led to greater tumor regression in two MDA-MB-231 and HCC-70 murine xenograft models than did docetaxel, without inducing neutropenia. Altogether, the data demonstrates the high in vivo efficacy and safety of TH1902 against TNBC through a SORT1 receptor-mediated mechanism. This property allows for selective treatment of SORT1-positive TNBC and makes TH1902 a promising avenue for personalized therapy with the potential of improving the therapeutic window of cytotoxic anticancer drugs such as docetaxel.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo , Combinação de Medicamentos , Descoberta de Drogas , Feminino , Inativação Gênica , Xenoenxertos , Humanos , Metástase Linfática , Camundongos , Camundongos Nus , Microtúbulos/efeitos dos fármacos , Transplante de Neoplasias , Neurotensina/farmacologia , Progranulinas/farmacologia , Neoplasias de Mama Triplo Negativas/mortalidade , Neoplasias de Mama Triplo Negativas/patologia , Proteína bcl-X/metabolismo
7.
Mol Cancer Ther ; 14(1): 129-40, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25492620

RESUMO

Anti-HER2 monoclonal antibodies (mAb) have been shown to reduce tumor size and increase survival in patients with breast cancer, but they are ineffective against brain metastases due to poor brain penetration. In previous studies, we identified a peptide, known as Angiopep-2 (An2), which crosses the blood-brain barrier (BBB) efficiently via receptor-mediated transcytosis, and, when conjugated, endows small molecules and peptides with this property. Extending this strategy to higher molecular weight biologics, we now demonstrate that a conjugate between An2 and an anti-HER2 mAb results in a new chemical entity, ANG4043, which retains in vitro binding affinity for the HER2 receptor and antiproliferative potency against HER2-positive BT-474 breast ductal carcinoma cells. Unlike the native mAb, ANG4043 binds LRP1 clusters and is taken up by LRP1-expressing cells. Measuring brain exposure after intracarotid delivery, we demonstrate that the new An2-mAb conjugate penetrates the BBB with a rate of brain entry (Kin) of 1.6 × 10(-3) mL/g/s. Finally, in mice with intracranially implanted BT-474 xenografts, systemically administered ANG4043 increases survival. Overall, this study demonstrates that the incorporation of An2 to the anti-HER2 mAb confers properties of increased uptake in brain endothelial cells as well as BBB permeability. These characteristics of ANG4043 result in higher exposure levels in BT-474 brain tumors and prolonged survival following systemic treatment. Moreover, the data further validate the An2-drug conjugation strategy as a way to create brain-penetrant biologics for neuro-oncology and other CNS indications.


Assuntos
Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Neoplasias Encefálicas/tratamento farmacológico , Imunoconjugados/administração & dosagem , Imunoconjugados/farmacocinética , Peptídeos/administração & dosagem , Peptídeos/farmacocinética , Receptor ErbB-2/imunologia , Animais , Anticorpos Monoclonais/metabolismo , Antineoplásicos/síntese química , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Feminino , Células MCF-7 , Camundongos , Camundongos Nus , Peptídeos/síntese química , Peptídeos/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
8.
J Med Chem ; 53(7): 2814-24, 2010 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-20210346

RESUMO

This report describes the synthesis and preliminary biological characterization of 2 (ANG1007) and 3 (ANG1009), two new chemical entities under development for the treatment of primary and secondary brain cancers. 2 consists of three doxorubicin molecules conjugated to Angiopep-2, a 19-mer peptide that crosses the blood-brain barrier (BBB) by an LRP-1 receptor-mediated transcytosis mechanism. 3 has a similar structure, with the exception that three etoposide moieties are conjugated to Angiopep-2. Both agents killed cancer cell lines in vitro with similar IC(50) values and with apparently similar cytotoxic mechanisms as unconjugated doxorubicin and etoposide. 2 and 3 exhibited dramatically higher BBB influx rate constants than unconjugated doxorubicin and etoposide and pooled within brain parenchymal tissue. Passage through the BBB was similar in Mdr1a (-/-) and wild type mice. These results provide further evidence of the potential of this drug development platform in the isolation of novel therapeutics with increased brain penetration.


Assuntos
Antineoplásicos/química , Antineoplásicos/metabolismo , Encéfalo/metabolismo , Doxorrubicina/análogos & derivados , Doxorrubicina/química , Doxorrubicina/metabolismo , Etoposídeo/análogos & derivados , Etoposídeo/química , Etoposídeo/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/deficiência , Sequência de Aminoácidos , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Transporte Biológico , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Encéfalo/citologia , Encéfalo/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Etoposídeo/farmacologia , Etoposídeo/uso terapêutico , Etoposídeo/toxicidade , Feminino , Humanos , Concentração Inibidora 50 , Cinética , Masculino , Camundongos , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Peptídeos/toxicidade
9.
J Cell Mol Med ; 14(12): 2827-39, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19818094

RESUMO

New and effective therapeutics that cross the blood-brain barrier (BBB) are critically needed for treatment of many brain diseases. We characterize here a novel drug development platform that is broadly applicable for the development of new therapeutics with increased brain penetration. The platform is based on the Angiopep-2 peptide, a sequence derived from ligands that bind to low-density lipoprotein receptor-related protein-1 (LRP-1), a receptor expressed on the BBB. Fluorescent imaging studies of a Cy5.5Angiopep-2 conjugate and immunohistochemical studies of injected Angiopep-2 in mice demonstrated efficient transport across the BBB into brain parenchyma and subsequent co-localization with the neuronal nuclei-selective marker NeuN and the glial marker glial fibrillary acidic protein (GFAP). Uptake of [(¹²5I]-Angiopep-2 into brain endothelial cells occurred by a saturable mechanism involving LRP-1. The primary sequence and charge of Angiopep-2 were crucial for its passage across the BBB. Overall, the results demonstrate the significant potential of this platform for the development of novel neurotherapeutics.


Assuntos
Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Sistemas de Liberação de Medicamentos , Peptídeos/metabolismo , Animais , Antígenos Nucleares/análise , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/irrigação sanguínea , Encéfalo/efeitos dos fármacos , Carbocianinas , Células Endoteliais/metabolismo , Proteína Glial Fibrilar Ácida/análise , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Camundongos , Microscopia de Fluorescência , Proteínas do Tecido Nervoso/análise , Transporte Proteico , Ensaio Radioligante , Ratos , Transcitose
10.
J Neurochem ; 106(4): 1534-44, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18489712

RESUMO

The blood-brain barrier (BBB) restricts the entry of proteins as well as potential drugs to cerebral tissues. We previously reported that a family of Kunitz domain-derived peptides called Angiopeps can be used as a drug delivery system for the brain. Here, we further characterize the transcytosis ability of these peptides using an in vitro model of the BBB and in situ brain perfusion. These peptides, and in particular Angiopep-2, exhibited higher transcytosis capacity and parenchymal accumulation than do transferrin, lactoferrin, and avidin. Angiopep-2 transport and accumulation in brain endothelial cells were unaffected by the P-glycoprotein inhibitor, cyclosporin A, indicating that this peptide is not a substrate for the efflux pump P-glycoprotein. However, competition studies show that activated alpha(2)-macroglobulin, a specific ligand for the low-density lipoprotein receptor-related protein-1 (LRP1) and Angiopep-2 can share the same receptor. In addition, LRP1 was detected in glioblastomas and brain metastases from lung and skin cancers. Fluorescent microscopy also revealed that Alexa488-Angiopep-2 co-localized with LRP1 in brain endothelial cell monolayers. Overall, these results suggest that Angiopep-2 transport across the BBB is, in part, mediated by LRP1.


Assuntos
Barreira Hematoencefálica/fisiologia , Encéfalo/fisiologia , Sistemas de Liberação de Medicamentos/métodos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/fisiologia , Oligopeptídeos/fisiologia , Fragmentos de Peptídeos/metabolismo , Somatostatina/análogos & derivados , Animais , Barreira Hematoencefálica/metabolismo , Bovinos , Linhagem Celular Tumoral , Células Cultivadas , Vetores Genéticos/administração & dosagem , Vetores Genéticos/metabolismo , Humanos , Fragmentos de Peptídeos/administração & dosagem , Peptídeos Cíclicos , Transporte Proteico/fisiologia , Ratos , Somatostatina/fisiologia
11.
J Biol Chem ; 282(11): 8142-9, 2007 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-17229722

RESUMO

Bone marrow-derived stromal cells (BMSC) are avidly recruited by experimental vascularizing tumors, which implies that they must respond to tumor-derived growth factor cues. In fact, BMSC chemotaxis and cell survival are regulated, in part, by the membrane type-1 matrix metalloproteinase (MT1-MMP), an MMP also involved in pro-MMP-2 activation and in degradation of the extracellular matrix (ECM). Given that impaired chemotaxis was recently observed in bone marrow cells isolated from a glucose 6-phosphate transporter-deficient (G6PT-/-) mouse model, we sought to investigate the potential MT1-MMP/G6PT signaling axis in BMSC. We show that MT1-MMP-mediated activation of pro-MMP-2 by concanavalin A (ConA) correlated with an increase in the sub-G1 cell cycle phase as well as with cell necrosis, indicative of a decrease in BMSC survival. BMSC isolated from Egr-1-/- mouse or MT1-MMP gene silencing in BMSC with small interfering RNA (siMT1-MMP) antagonized both the ConA-mediated activation of pro-MMP-2 and the induction of cell necrosis. Overexpression of recombinant full-length MT1-MMP triggered necrosis and this was signaled through the cytoplasmic domain of MT1-MMP. ConA inhibited both the gene and protein expression of G6PT, while overexpression of recombinant G6PT inhibited MT1-MMP-mediated pro-MMP-2 activation but could not rescue BMSC from ConA-induced cell necrosis. Cell chemotaxis in response to the tumorigenic growth factor sphingosine 1-phosphate was significantly abrogated in siMT1-MMP BMSC and in chlorogenic acid-treated BMSC. Altogether, we provide evidence for an MT1-MMP/G6PT signaling axis that regulates BMSC survival, ECM degradation, and mobilization. This may lead to optimized clinical applications that use BMSC as a platform for the systemic delivery of therapeutic or anti-cancer recombinant proteins in vivo.


Assuntos
Antiporters/biossíntese , Células da Medula Óssea/citologia , Regulação para Baixo , Regulação da Expressão Gênica , Metaloproteinase 14 da Matriz/fisiologia , Proteínas de Transporte de Monossacarídeos/biossíntese , Células Estromais/citologia , Animais , Quimiotaxia , Matriz Extracelular/metabolismo , Glucose-6-Fosfato/metabolismo , Ácidos Hidroxâmicos , Indóis/farmacologia , Lisofosfolipídeos/farmacologia , Metaloproteinase 14 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes/química , Esfingosina/análogos & derivados , Esfingosina/farmacologia
12.
Leuk Res ; 31(9): 1277-84, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17081606

RESUMO

Matrix metalloproteinase (MMP)-9 expression is linked with myeloid cell differentiation, as well as inflammation and angiogenesis processes related to cancer progression. MMP-9 secretion and macrophage-like HL-60 myeloid leukemia cells differentiation were triggered by the tumor-promoting agent PMA. The chemopreventive effects of green tea catechins epigallocatechin-gallate, catechin-gallate, and epicatechin-gallate, but not those catechins that lack a 3'-galloyl group, inhibited in a time- and dose-dependent manner MMP-9 secretion. The gene and protein expression of MMP-9 and of the mRNA stabilizing factor HuR were also inhibited, while that of the 67 kDa laminin receptor remained unaffected. Specific catechins may help optimize current chemotherapeutic treatment protocols for leukemia.


Assuntos
Anticarcinógenos/farmacologia , Catequina/análogos & derivados , Diferenciação Celular/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Inibidores de Metaloproteinases de Matriz , Proteínas de Ligação a RNA/antagonistas & inibidores , Chá/química , Antígenos de Superfície/metabolismo , Carcinógenos/farmacologia , Catequina/farmacologia , Adesão Celular/efeitos dos fármacos , Proteínas ELAV , Proteína Semelhante a ELAV 1 , Células HL-60/efeitos dos fármacos , Células HL-60/metabolismo , Humanos , Immunoblotting , Metaloproteinase 9 da Matriz/metabolismo , Proteínas de Ligação a RNA/metabolismo , Acetato de Tetradecanoilforbol/farmacologia
13.
Biochem Biophys Res Commun ; 346(1): 358-66, 2006 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-16759641

RESUMO

PURPOSE: PCK3145 is an anti-metastatic synthetic peptide with promising therapeutic efficacy against hormone-refractory prostate cancer. The characterization of the PCK3145 peptide cell surface binding/internalization mechanisms and of the receptors involved remained to be explored. RESULTS: [(14)C]PCK3145 cell surface binding assays showed rapid and transient kinetic profile, that was inhibited by RGD peptides, laminin, hyaluronan, and type-I collagen. RGD peptides were however unable to inhibit PCK3145 intracellular uptake. Far-Western ligand binding studies enabled the identification of the 37-kDa laminin receptor precursor (37LRP) as a potential ligand for PCK3145. Overexpression of the recombinant 37LRP indeed led to an increase in PCK3145 binding but unexpectedly not to its uptake. CONCLUSIONS: Our data support the implication of laminin receptors in cell surface binding and in transducing PCK3145 anti-metastatic effects, and provide a rational for targeting cancers that express high levels of such laminin receptors.


Assuntos
Fragmentos de Peptídeos/metabolismo , Proteínas Secretadas pela Próstata/metabolismo , Precursores de Proteínas/metabolismo , Receptores de Laminina/metabolismo , Catequina/análogos & derivados , Catequina/farmacologia , Comunicação Celular , Linhagem Celular Tumoral , Colágeno Tipo I/farmacologia , Sinergismo Farmacológico , Humanos , Cinética , Metaloproteinase 9 da Matriz/metabolismo , Metástase Neoplásica/tratamento farmacológico , Oligopeptídeos/farmacologia , Receptores de Superfície Celular/metabolismo
14.
Anticancer Drugs ; 17(4): 429-38, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16550001

RESUMO

PCK3145 is a synthetic peptide corresponding to amino acids 31-45 of prostate secretory protein 94 which can reduce experimental skeletal metastases and prostate tumor growth. These anti-metastatic and anti-tumoral effects of PCK3145 are partially explained by the in-vivo and in-vitro decrease in matrix metalloproteinase (MMP)-9 extracellular levels through as yet unidentified molecular mechanisms of action. Gelatin zymography and immunoblots were used to monitor the levels of secreted MMP-9 from HT-1080 cells. Flow cytometry was used to monitor HT-1080 cell surface binding of FITC-labeled PCK3145 and biotin-labeled laminin. PCK3145-coated cell culture dishes were used to monitor cell adhesion. HT-1080 cell lysates were used for immunoblotting of HuR, extracellular signal-regulated protein kinase (ERK) and phospho-ERK. Total RNA was isolated and RT-PCR used to monitor HuR gene expression. We found that PCK3145 bound to the HT-1080 cell surface and that this binding rapidly triggered ERK phosphorylation that, ultimately, led to a reduction of secreted MMP-9. Laminin inhibited both cell surface binding and ERK phosphorylation by PCK3145. Overexpression of the 67-kDa laminin receptor led to an increased binding of the cells to PCK3145. HuR, a protein that can bind to and stabilize MMP-9 mRNA, was found to be downregulated by PCK3145. The mitogen-activated protein kinase/ERK (MEK) inhibitor PD98059 as well as native laminin and SIKVAV laminin-derived peptide prevented that downregulation. Our data suggest that PCK3145 rapidly triggers intracellular signaling through cell surface laminin receptors. This leads to decreased HuR expression and subsequent destabilization of MMP-9 transcripts. This is the first molecular evidence demonstrating the intracellular signaling and anti-metastatic mechanism of action of PCK3145 that leads to the inhibition of MMP-9 secretion.


Assuntos
Inibidores de Metaloproteinases de Matriz , Fragmentos de Peptídeos/farmacologia , Proteínas Secretadas pela Próstata/farmacologia , Receptores de Laminina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Antígenos de Superfície/metabolismo , Neoplasias Ósseas/enzimologia , Neoplasias Ósseas/prevenção & controle , Neoplasias Ósseas/secundário , Linhagem Celular Tumoral , Proteínas ELAV , Proteína Semelhante a ELAV 1 , Flavonoides/farmacologia , Humanos , Laminina/farmacologia , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Oligopeptídeos/farmacologia , Fragmentos de Peptídeos/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/patologia , Proteínas Secretadas pela Próstata/química , Proteínas Secretadas pela Próstata/metabolismo , Ligação Proteica , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas de Ligação a RNA/metabolismo , Receptores de Laminina/efeitos dos fármacos
15.
Cancer Cell Int ; 6: 7, 2006 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-16566826

RESUMO

BACKGROUND: Chlorogenic acid (CHL), the most potent functional inhibitor of the microsomal glucose-6-phosphate translocase (G6PT), is thought to possess cancer chemopreventive properties. It is not known, however, whether any G6PT functions are involved in tumorigenesis. We investigated the effects of CHL and the potential role of G6PT in regulating the invasive phenotype of brain tumor-derived glioma cells. RESULTS: RT-PCR was used to show that, among the adult and pediatric brain tumor-derived cells tested, U-87 glioma cells expressed the highest levels of G6PT mRNA. U-87 cells lacked the microsomal catalytic subunit glucose-6-phosphatase (G6Pase)-alpha but expressed G6Pase-beta which, when coupled to G6PT, allows G6P hydrolysis into glucose to occur in non-glyconeogenic tissues such as brain. CHL inhibited U-87 cell migration and matrix metalloproteinase (MMP)-2 secretion, two prerequisites for tumor cell invasion. Moreover, CHL also inhibited cell migration induced by sphingosine-1-phosphate (S1P), a potent mitogen for glioblastoma multiform cells, as well as the rapid, S1P-induced extracellular signal-regulated protein kinase phosphorylation potentially mediated through intracellular calcium mobilization, suggesting that G6PT may also perform crucial functions in regulating intracellular signalling. Overexpression of the recombinant G6PT protein induced U-87 glioma cell migration that was, in turn, antagonized by CHL. MMP-2 secretion was also inhibited by the adenosine triphosphate (ATP)-depleting agents 2-deoxyglucose and 5-thioglucose, a mechanism that may inhibit ATP-mediated calcium sequestration by G6PT. CONCLUSION: We illustrate a new G6PT function in glioma cells that could regulate the intracellular signalling and invasive phenotype of brain tumor cells, and that can be targeted by the anticancer properties of CHL.

16.
Clin Exp Metastasis ; 22(5): 429-39, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16283486

RESUMO

PURPOSE: PCK3145 is a synthetic peptide corresponding to amino acids 31-45 of prostate secretory protein 94, which can reduce experimental skeletal metastases and prostate tumor growth in vivo. Part of its biological action involves the reduction of circulating plasma matrix metalloproteinase (MMP)-9, a crucial mediator in extracellular matrix (ECM) degradation during tumor metastasis and cancer cell invasion. The antimetastatic mechanism of action of PCK3145 is however, not understood. EXPERIMENTAL DESIGN: HT-1080 fibrosarcoma cells were treated with PCK3145, and cell lysates used for immunoblot analysis of small GTPase RhoA and membrane type (MT)1-MMP protein expression. Conditioned media was used to monitor soluble MMP-9 gelatinolytic activity by zymography and protein expression by immunoblotting. RT-PCR was used to assess RhoA, MT1-MMP, MMP-9, RECK, and CD44 gene expression. Flow cytometry was used to monitor cell surface expression of CD44 and of membrane-bound MMP-9. Cell adhesion was performed on different purified ECM proteins, while cell migration was specifically performed on hyaluronic acid (HA). RESULTS: We found that PCK3145 inhibited HT-1080 cell adhesion onto HA, laminin-1, and type-I collagen suggesting the common implication of the cell surface receptor CD44. In fact, PCK3145 triggered the shedding of CD44 from the cell surface into the conditioned media. PCK3145 also inhibited MMP-9 secretion and binding to the cell surface. This effect was correlated to increased RhoA and MT1-MMP gene and protein expression. CONCLUSIONS: Our data suggest that PCK3145 may antagonize tumor cell metastatic processes by inhibiting both MMP-9 secretion and its potential binding to its cell surface docking receptor CD44. Such mechanism may involve RhoA signaling and increase in MT1-MMP-mediated CD44 shedding. Together with its beneficial effects in clinical trials, this is the first demonstration of PCK3145 acting as a MMP secretion inhibitor.


Assuntos
Receptores de Hialuronatos/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Metástase Neoplásica/fisiopatologia , Fragmentos de Peptídeos/farmacologia , Proteínas Secretadas pela Próstata/química , Fibrossarcoma/patologia , Citometria de Fluxo , Perfilação da Expressão Gênica , Humanos , Receptores de Hialuronatos/biossíntese , Poliésteres , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...